ReProCS: A Missing Link between Recursive Robust PCA and Recursive Sparse Recovery in Large but Correlated Noise
نویسندگان
چکیده
This work studies the recursive robust principal components’ analysis (PCA) problem. Here, “robust” refers to robustness to both independent and correlated sparse outliers, although we focus on the latter. A key application where this problem occurs is in video surveillance where the goal is to separate a slowly changing background from moving foreground objects on-the-fly. The background sequence is well modeled as lying in a low dimensional subspace, that can gradually change over time, while the moving foreground objects constitute the correlated sparse outliers. In this and many other applications, the foreground is an outlier for PCA but is actually the “signal of interest” for the application; where as the background is the corruption or noise. Thus our problem can also be interpreted as one of recursively recovering a time sequence of sparse signals in the presence of large but spatially correlated noise. This work has two key contributions. First, we provide a new way of looking at this problem and show how a key part of our solution strategy involves solving a noisy compressive sensing (CS) problem. Second, we show how we can utilize the correlation of the outliers to our advantage in order to even deal with very large support sized outliers. The main idea is as follows. The correlation model applied to the previous support estimate helps predict the current support. This prediction serves as “partial support knowledge” for solving the modified-CS problem instead of CS. The support estimate of the modified-CS reconstruction is, in turn, used to update the correlation model parameters using a Kalman filter (or any adaptive filter). We call the resulting approach “support-predicted modified-CS”.
منابع مشابه
Recursive sparse recovery in large but structured noise - Part 2
We study the problem of recursively recovering a time sequence of sparse vectors, St, from measurements Mt := St + Lt that are corrupted by structured noise Lt which is dense and can have large magnitude. The structure that we require is that Lt should lie in a low dimensional subspace that is either fixed or changes “slowly enough”; and the eigenvalues of its covariance matrix are “clustered”....
متن کاملar X iv : 1 30 3 . 11 44 v 1 [ cs . I T ] 5 M ar 2 01 3 1 Recursive Sparse Recovery in Large but Structured Noise – Part 2
We study the problem of recursively recovering a time sequence of sparse vectors, St, from measurements Mt := St + Lt that are corrupted by structured noise Lt which is dense and can have large magnitude. The structure that we require is that Lt should lie in a low dimensional subspace that is either fixed or changes “slowly enough”; and the eigenvalues of its covariance matrix are “clustered”....
متن کاملOnline (Recursive) Robust Principal Components Analysis
This work studies the problem of sequentially recovering a sparse vector St and a vector from a low-dimensional subspace Lt from knowledge of their sum Mt := Lt + St. If the primary goal is to recover the low-dimensional subspace in which the Lt’s lie, then the problem is one of online or recursive robust principal components analysis (PCA). An example of where such a problem might arise is in ...
متن کاملProvable Dynamic Robust PCA or Robust Subspace Tracking
Dynamic robust PCA refers to the dynamic (time-varying) extension of the robust PCA (RPCA) problem. It assumes that the true (uncorrupted) data lies in a low-dimensional subspace that can change with time, albeit slowly. The goal is to track this changing subspace over time in the presence of sparse outliers. This work provides the first guarantee for dynamic RPCA that holds under weakened vers...
متن کاملNearly Optimal Robust Subspace Tracking and Dynamic Robust PCA
In this work, we study the robust subspace tracking (RST) problem and obtain one of the first two provable guarantees for it. The goal of RST is to track sequentially arriving data vectors that lie in a slowly changing low-dimensional subspace, while being robust to corruption by additive sparse outliers. It can also be interpreted as a dynamic (time-varying) extension of robust PCA (RPCA), wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1106.3286 شماره
صفحات -
تاریخ انتشار 2011